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ABSTRACT: A scalable (<130 nm) resistive switching memristor that
features both filamentary and interfacial switching aimed at neuro-
morphic computing is developed in this study. The typically perceived
noise or volatility was effectively harnessed as a controlled mechanism for
interfacial switching. The multilayer structure for the proposed memristor
enhances switching stability by curbing ionic overmigration and
mitigating leakage paths. Furthermore, the memristors showcased their
reliability by demonstrating more than 15 M cycles in the filamentary
mode and 1 M pulses in the interfacial mode. Additionally, retention tests
at 85 °C for 104 s confirmed the stability across different states, affirming
its reliability as a nonvolatile CMOS-compatible element. While many
studies validate performance solely on the MNIST data set, this work also
evaluates more complex data sets, demonstrating the robustness of the
demonstrated memristor in supervised learning. Specifically, supervised learning simulations on MNIST and fashion MNIST
data sets indicated a high learning rate with <4% deviations from numerical training, while offline inference trained on CIFAR-
10 and CIFAR-100 data sets revealed <2.5% and <7% deviations caused by programing error accumulation, even with
increased memristor counts for these highly complex data sets. Unsupervised learning via spike-timing-dependent plasticity
further highlights the potential of the developed memristor in bridging artificial and biological paradigms, offering a significant
advance toward efficient and biologically inspired computing architectures.
KEYWORDS: memristor, filamentary switching, interfacial switching, artificial neural networks, spiking neural networks

In the ever-evolving pursuit of emerging memory technologies,
the resistive switching memory, or memristors, stands out for
its ability to store data by altering its resistance based on the
applied external electric field.1,2 This makes it suitable for a
myriad of applications, from data storage to neuromorphic
applications, positioning it as a viable successor to existing
computing architectures.3−5 The conventional computing
systems, structured around separate processing and memory
units, often face challenges in efficiently handling complex data
sets typical of artificial intelligence (AI) tasks. These tasks
range from supervised learning, where models learn from
labeled data, to unsupervised learning, which involves
identifying patterns in unlabeled data.6−8 Memristors facilitate
in-memory computing and promise a significant reduction in
energy consumption and processing time, offering a better fit
for modern AI demands.9−11 There is also potential for this
efficiency to be further enhanced by recent advancements that
allow memristors to exhibit both filamentary and interfacial
characteristics within a single device, which was previously

reported as mutually exclusive.12−17 The coexistence of these
switching modes allows the memristors to broaden their
applications to accommodate more of the aforementioned
computational tasks. Specifically, the dual mode functionality
of these devices not only accommodates binary logic essential
for general computational tasks, as seen in filamentary devices,
but also facilitates analogue computation akin to the biological
brain’s synaptic activities, characteristic of the interfacial mode.
However, most of such research often framed interfacial
switching as a noise disruption or found it to be volatile,
making it unsuitable for specific AI applications such as edge
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computing and neural net processing where data persistence is
required.18−21 Furthermore, numerous studies have yet to
validate the performance of their memristors against the
specific applications for which they are purportedly suit-
able.22−28 Additionally, the efficacy of many other works is
asserted based on the high accuracy rates achieved by training
their simulated memristors on only the MNIST data set.29−32

The MNIST data set, with its relatively simple and well-
understood set of grayscale images of handwritten digits, offers
a convenient starting point for demonstrating the capability of
developed computational architectures, including those based
on memristors, to perform supervised pattern recognition
tasks.33 However, relying solely on MNIST for benchmarking
presents several limitations that could hinder advancement and
understanding of the true potential of memristive devices for
more complex AI applications. This concern is due to the
simplicity of the data set, which may not accurately reflect the
performance of memristive devices on more challenging tasks.
This study aims to develop a memristor combining both

filamentary and interfacial switching with a focus on state
stability. Additionally, it seeks to meet the elevated perform-
ance standards required by such a dual-switching device
compared with its single-switching mode counterparts. The
key focuses include reliability factors, such as state variations,
endurance, and retention. There is also an evaluation of how
the presented memristor meets these criteria, which includes a
supervised learning simulation for performance comparison
against an ideal memristor array using more complicated data

sets like CIFAR-10 and CIFAR-100. Finally, it investigates the
memristor’s versatility in potentially enabling unsupervised
learning. This not only demonstrates the feasibility of dual-
mode memristive devices for complex data processing and
learning tasks but also sets a foundation for future research in
biologically inspired computing architectures.

RESULTS AND DISCUSSION
Electrical Characterizations. In resistive switching, bring-

ing the state of the device from a low conductive state (LCS)
to a high conductive state (HCS) is also known as the set
operation. Conversely, the reset operation returns the device
from an HCS to an LCS.34−36 Typically, these devices are
characterized electrically using a DC double-sweep; the first
sweep in one polarity acts to set the device, and the opposite
polarity sweep resets the device. This essentially enables the
elucidation of the resistive switching characteristics of the
device through a pinched hysteresis loop that is commonly
observed due to the change in device conductance during the
sweep-forward and sweep-back state. The memristive
structures presented in this work exhibit different switching
characteristics depending on the operation scheme applied to
the memristor. Figure 1a presents a schematic showing the
integration of a Pt/N−Al2O3 (1 nm)/N−Ta2O5 (2 nm)/Ta2N
memristor structure connected to a 40 nm NMOS transistor at
its drain. The magnified image depicts a transmission electron
microscopy (TEM) image, confirming the deposited layer
thicknesses. Moreover, Figure S1a shows the scanning electron

Figure 1. (a) Schematic of the 1T−1R device, not drawn to scale. The magnified area highlights the cross-sectional TEM image of the
memristive device structure. Multilevel switching capabilities of the device through (b) interfacial switching compliance current variation
(100−500 μA). (c,d) Pre- and postannealed device-to-device (3 devices) and cycle-to-cycle variation comparing resistance levels for control
samples showing the non-nitrogen-doped devices [sample A − Pt (30 nm)/Al2O3 (1 nm)/Ta2O5 (2 nm)/Ta2N (VIA)], single switching layer
devices [sample B − Pt (30 nm)/N−Ta2O5 (3 nm)/Ta2N (VIA)], and optimized devices in this work [sample C − Pt (30 nm)/N−Al2O3 (1
nm)/N−Ta2O5 (2 nm)/Ta2N (VIA)].
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microscopy (SEM) image taken after the focused ion beam
cut, revealing the entire cross section of the device. The
integrated device consists of the transistor fabricated using the
back-end-of-line process and the memristor integrated post-
back-end-of-line. This memristive device, highlighted in Figure
S1a, has a diameter of approximately 130 nm. Further
magnification of this region, presented in Figure S1b, reveals
the detailed EDX mapping of key elements, including O, Al,
Ta, Pt, and N, which confirms the presence and distribution of
the deposited layers. The EDX line scan, corresponding to the
direction indicated in Figure S1b, is shown in Figure 1c,
verifying the layer thicknesses of N−Ta2O5 and N−Al2O3 to be
approximately 2 and 1 nm, respectively. These TEM and EDX
analyses validate the structural composition of the device.
During operation, the voltage was constantly applied with
respect to the Ta2N vertical interconnect access (VIA) while
the memristor drain pad was always grounded. In other words,
for 1-resistor (1R) electrical characterizations, the probes were
only on the memristor device pad (ground) and the drain pad.
In contrast, for 1 transistor−1 resistor (1T−1R) character-
izations, the source, gate, and memristor device pad
(grounded) were probed. All unused pads remained floating.
In this work, all DC measurements were done using 1R while
all pulsed measurements were completed by utilizing the 1T−
1R device. In the integrated 1T−1R device, the transistor gate
was mainly leveraged as a current limiter for the memristor.
From a pristine state, applying a negative voltage on the
memristor switches the device interfacially and sets the device
to an interfacial HCS. This interfacial switching can be seen in
Figure 1b, by which the current increases gradually as the
voltage applied increases negatively (interfacial set process),
and subsequent positive DC sweep induces a current decrease
(interfacial reset process). Simultaneously, on the same device,
filamentary switching is observed (see Figure S2a,b) when a
positive forming voltage is applied to soft break down the
device. This forming process is utilized to initiate switching in
filamentary devices in which a higher voltage is generally
required. In this work, forming is employed to switch the
device to a filamentary HCS. This typically only happens
during the first filamentary cycle and can be applied either in
its pristine or interfacial state. Filamentary switching is typically
characterized by the observation of the device’s abrupt change
in current as the positive voltage applied is increased. The
origin of the abrupt current change in filamentary switching is
known to be driven by the localized ionic migration, where
oxygen vacancies are left behind, and they facilitate electron
hopping. This reduces the effective resistance of the device.
The localized region of accumulated ions effectively creates a
“virtual electrode” within the switching layer, enhancing the
local electric field. As this happens, the migration of ions
accelerates, leading to a positive feedback loop until a fully
conductive path connects both electrodes. This positive
feedback loop is a direct consequence of the abrupt current
change observed in localized filamentary switching. Con-
versely, interfacial switching does not exhibit this abrupt
current change because its mechanism involves more uniform
ionic modulation across the interfaces rather than the localized
process described in filamentary switching. Hence, the self-
reinforcing positive feedback effect that causes abrupt current
changes in filamentary switching above does not occur in
interfacial switching. This distinction is quantitatively reflected
in the switching windows portrayed in Figure S2c, where the
filamentary switching exhibited a median 0.439 mA current

change over five voltage sweeps of 0.08 V. Comparatively, the
interfacial switching exhibited a similar current increase of
0.453 mA over a much larger voltage sweep of 0.5 V.
The operating parameters of the selected structure were

evaluated by 1R characterization. The parameter analyzer was
also configured to investigate the multilevel cell (MLC)
switching capabilities of the memristor. Generally, two
methods can be utilized to achieve the MLC properties, either
by applying different ICC or by varying the reset voltage. Both
methods work by manipulating the change of the ion dynamics
within the switching layer/s to alter the resistance of the
device, and the effects on filamentary MLC have been shown
in Figures S1a,b, respectively.37−39 The MLC capabilities of
the device under the interfacial switching scheme are depicted
in Figure 1b. This interfacial switching is observed on the
device preforming, and the ICC was limited from 100 to 500 μA
with an increment of 100 μA. The different states in Figure 1b
were stored as a single interfacial LCS and five different
interfacial HCS corresponding to the different applied ICC.
Figure S2a depicts the device under ten different ICC, limited
from 0.1 to 1.0 mA in increments of 0.1 mA. This resulted in
11 different states, corresponding to those HCS produced by
the ICC and one LCS. Figure S2b depicts seven different MLCs
(one HCS and six LCS) corresponding to the different reset
voltages, varying from −0.5 to −1.0 V, with an increment of
−0.1 V. It is also observed at the filamentary reset region that
the device seems to undergo a reset voltage saturation past
−1.0 V by which the current started to increase again instead
of decreasing. Under all three schemes discussed in Figures 1b
and S1a,b, ten continuous cycles of double sweeps were
performed for each ICC or reset voltages were applied. It should
be noted that in all these figures, the inset depicts the MLC
that could be obtained at a read voltage of 0.1 V and that none
of those states overlapped with each other. This is crucial
because nonoverlapping states are required for optimal
neuromorphic computing operations. Moreover, it was also
noticed that increasing the thickness of oxide layers of the
memristor, specifically by maintaining the N-doped Ta2O5
(N−Ta2O5) and N−Al2O3 (N-doped Al2O3) ratios at 2:1, can
significantly reduce the operating current, leading to better
energy efficiency. In devices where the oxide layers’ thicknesses
were doubled, there was a reduction of current by more than
100 times, as illustrated in Figure S2d.
In our previous study, a device featuring Pt/Ta2O5/Ta2N

memristor structure, in which the focus was on unraveling the
switching mechanism in both switching modes.40 Building on
the underlying physics outlined in the previous research, this
work endeavors to advance the performance across various
applications, incorporating several pivotal processes. These
enhancements are critical for realizing the full potential of
applications from memory devices to neuromorphic chips.
First, from the left to right column, Figure 1c depicts the
preannealed non-nitrogen-doped control devices [sample A −
Pt (30 nm)/Al2O3 (1 nm)/Ta2O5 (2 nm)/Ta2N (VIA)],
single switching layer control devices [sample B − Pt (30 nm)/
N−Ta2O5 (3 nm)/Ta2N (VIA)], and the optimized devices
presented in this work, which consists of both nitrogen-doped
and bilayer devices [sample C − Pt (30 nm)/N−Al2O3 (1
nm)/N−Ta2O5 (2 nm)/Ta2N (VIA)] read at 0.1 V after 25
cycles in both filamentary (blue) and interfacial (red) LCS and
HCS. The interfacial states were achieved through DC cycling,
utilizing −3.0 V for the set process and 1.0 V for the reset
process with an ICC of 100 μA. The filamentary states were also
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obtained via DC cycling, utilizing 2.0 V for the set process and
−1.25 V for the reset process with an ICC of 500 μA. These DC
cycles are depicted in Figures S3−S8. Figure 1d shows the
same devices from Figure 1c after annealing at 400 °C for 1 h
under vacuum conditions at approximately 5 × 10−8 Torr. In
general, devices in sample C showed an increase in the on−off
ratio compared to sample A in the interfacial mode, with the
preannealed devices increasing the ratio from ∼5× to >11×
and postannealed devices increasing from ∼5× to >10×
(measured from median to median). Next, the devices in
sample B, although it shows a higher on−off ratio in the
interfacial mode compared to sample C (>35× compared to
>11× for preannealed devices and >32× to >10× for
postannealed devices), it is worse off in the filamentary
mode (>3× compared to >9× for preannealed devices and
>6× to >10× for postannealed devices). Moreover, annealing
further improves the cycle-to-cycle and device-to-device
variation of the devices, which is compared by utilizing the
coefficient of variation (CV, σ/x ) for each mode and their
respective LCS and HCS. Furthermore, the forming voltage of
devices in samples A−C was also measured, and the results are
presented in Figure S9. An observation could be made that the
forming voltage decreased across all samples after annealing.
Thermal treatment under vacuum accelerates the reduction of
N−Ta2O5 and promotes the oxidation of Ta2N, resulting in a
thicker TaOxNy layer.41,42 This process reduces forming
voltage and has been shown to enhance dopant activation in
nitrogen-doped TaOx-based firms, contributing to the
improved switching stability in both LCS and HCS, as
mentioned previously.43,44 The range of forming voltages is
shown in Figure S9 with a median of ∼1.6 V and a standard
deviation of 0.04 V. Sample C (the optimized structure
presented in this work) is also observed to be the structure
with the smallest forming voltage distribution compared with
samples A and B, with an acceptably forming voltage
magnitude. A uniform forming voltage is arguably more
important than the magnitude, as the former leads to more
consistent switching behavior across devices, which is critical
for applications like memory and neuromorphic computing.
This also ensures that all devices in the array can be activated
without excessively high voltages, which could damage some
devices or fail to form them. This is the key to producing high-
density arrays or neuromorphic networks. Hence, the specific
structure in sample C was chosen for this work after
considering the trade-offs between the on−off ratio, variability,
and forming voltage. Comparing sample A and sample C, N-
doping has been well-documented to improve the variability of
filamentary memristors. Misha et al. highlighted that optimum
doping of nitrogen could mitigate leakage paths by occupying
more oxygen vacancies while Sedghi et al. supported this claim
through ab initio calculations, demonstrating that nitrogen
doping eliminates midgap defect states caused by vacancies,
thereby lowering the density of vacancy-induced defect
states.45,46 From the results in Figure 1c,d, it is hence
hypothesized in this work that N-doping also aids in the
mitigation of the leakage path in the interfacial mode.
Moreover, the state stability enhancement suggests that the
implementation of the bilayer leads to an interfacial layer that
not only confines filament formation but also acts as a barrier
to preventing the overmigration of ions.
Revelation of Switching Mechanism by Utilizing XPS

Depth Profiling. By comparing control samples, insights were
garnered on the adjustable parameters during the memristor

optimization, specifically those with bimodal switching
characteristics. Hence, it is paramount to achieve a
comprehensive understanding of the switching mechanisms
in the optimized structure. The X-ray photoelectron spectros-
copy (XPS) depth profile analysis was conducted to ascertain
the concentration of elements at specific depths within the
device. Owing to the inherent constraints of XPS, enlarged
devices were fabricated with dimensions of 100 μm in diameter
and switching layers of 16 and 8 nm in thickness for N−Ta2O5
and N−Al2O3, respectively. The selection of these specific
device sizes and layer thicknesses was critical to ensure
consistency in resistance levels during XPS measurements
compared to the device used in this study. As smaller devices
do not generate sufficient signal for effective XPS measure-
ments, the device diameter had to be scaled up (130 nm to 100
μm). To accommodate this larger device diameter needed for
XPS measurements, the oxide thickness was also scaled up
together. This was essential because increasing only the
diameter would have increased the current flowing through the
device, which would have diminished the switching window
between different states. Increasing the device thickness [N−
Al2O3(1 nm)/N−Ta2O5(2 nm) to N−Al2O3(8 nm)/N−
Ta2O5(16 nm)], conversely, as shown previously in Figure
S2d, increases the current across the device. This adjustment of
both variables was optimized to effectively regulate the
switching resistance, regardless of the device size. This
technique is commonly employed in studies on scalable
devices, particularly when the devices are too small for effective
XPS signal detection.15,47 The DC I−V curves of both the XPS
sample and the device used in this study, as shown in Figure
S10 (with an inset depicting their dimensions�the XPS
sample with a diameter of 100 μm and the device at 130 nm,
drawn not to scale), corroborate this approach. They exhibit
similar electrical characteristics despite the scaling, validating
the method of simultaneously adjusting the device’s thickness
and diameter to maintain its switching behavior. Specifically,
the process of filamentary switching is primarily governed by
localized defect sites and conductive filament forming within a
confined switching depth. Additionally, after forming, the
device’s switching depth is restricted to regions where the
oxygen vacancies are generated and recombined. Yu et al.
described this as the “active layer” of their TiN/metal oxide/Pt
device.48 They attributed the active layer to having a smaller
oxygen migration barrier than that of the other switching
layers. As a result, the filamentary switching mechanism should
not fundamentally alter due to device scaling since the critical
processes occur within a localized region that remains
consistent despite changes in overall device dimensions.
Similarly, in the case of interfacial switching, scaling both the
oxide thickness and the device diameter ensures that the
switching mechanism is preserved. This careful scaling
approach confirms that the switching behavior observed in
devices with different thicknesses is consistent, validating the
use of the XPS sample for mechanistic insights. Three different
devices of different states on the same sample were prepared
and measured for this experiment: a pristine (doubled as the
interfacial LCS, depicted in black), an interfacial HCS (in red),
and a filamentary HCS device (in blue). The fitting of the XPS
spectra for O 1s and Ta 4f are presented in Figures S11 and
S12, respectively. The deconvolution of O 1s peaks resulted in
lattice and nonlattice oxygen peaks (528−536 eV), and the Ta
4f peaks yielded five doublet peaks corresponding to different
states of tantalum oxide and its compounds (20−32 eV).49−53
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Figure 2a,b illustrates the percentage concentrations of
nonlattice oxygen and TaOxNy as they vary with the etching
duration of the devices, respectively. The analysis of the
TaOxNy profile in Figure 2b showed a gradually increasing
trend from the N−Al2O3/N−Ta2O5 interface to the N−
Ta2O5/Ta2N interface. Initially, from the pristine state, a
positive forming voltage switched the device into its
filamentary HCS. As seen in Figure 2a, this transition led to
an increase in nonlattice oxygen by around 7.5% within the
N−Al2O3 bulk. Concurrently, Figure 2b indicates a decrease in
TaOxNy bonds at the Ta2N and N−Ta2O5 interface, mirroring
the increase in nonlattice oxygen. Figure 2c shows the device
switching mechanisms based on the XPS results. After forming,
the device transitions to a filamentary HCS. From the pristine
to the filamentary HCS, the highest increase of the nonlattice
oxygen concentration was located within the N−Al2O3 bulk,
indicating that majority of the defect generation during the
filamentary set process occurred in that region. Furthermore,
there was an increase in the nonlattice oxygen concentration
between the N−Al2O3 bulk and N−Al2O3/N−Ta2O5 interface,
which decreased below the interface, highlighting the
interface’s role in the switching process. This dynamic proves
the hypothesis that the interfacial region acts as a critical
barrier, modulating the nonlattice oxygen movement and
influencing the device’s stability during switching events.
During filamentary reset, the filament tends to rupture at the
weakest point, near the site with the least nonlattice oxygen
concentration. This area is also where the nonlattice oxygen
ions and oxygen vacancies are recombined.
To explain the interfacial mechanism, from Figure 2a,

applying a negative voltage during the set process led to the
generation of nonlattice oxygen in the interfacial region
between Ta2N and N−Ta2O5 bulk (around 2.5%), as well as

in the N−Al2O3 bulk (around 5%). Conversely, applying a
positive interfacial reset voltage promotes recombination.
Figure 2b shows a 7% decrease in the TaOxNy concentration
in the N−Ta2O5/TaOxNy interfacial region, while an increase
then diminishing decrease in the concentration within the N−
Ta2O5 bulk during the interfacial set. Referring to Figure 2c,
these changes in compound percentages can be interpreted as
the modulation of the N−Ta2O5/TaOxNy interfacial layer
thickness during switching. Additionally, when the negative
voltage is applied during the interfacial set, nonlattice oxygen
ions are expected to move toward the direction of the Pt
electrode. However, the decrease of the disparity in TaOxNy
content between the pristine and interfacial HCS devices again
signals the existence of a barrier at the N−Al2O3/N−Ta2O5
interface, as it is difficult for nonlattice oxygen to migrate
across this barrier. This is also evident in the nonlattice oxygen
percentage of the interfacial HCS device dipping below that of
the pristine device toward the N−Al2O3/N−Ta2O5 interface.
The XPS depth profiling analysis can be used in conjunction
with Figure 1c,d to correlate ionic mechanisms during
filamentary and interfacial switching to resistance levels during
device operations. Most importantly, in both figures, the LCS
in both modes of the single-layer control devices consistently
showed higher CV compared with optimized devices. This
suggests a link to the observation from the XPS depth profiling
results, where the oxide bilayer’s interface acts as an ion
migration barrier, potentially increasing the rate of return to
initial states in successive cycles.
Pulse Operations of Localized-Interfacial Memristors

and Reliability. Following the unraveling of the switching
mechanism of the memristors, the devices in their filamentary
and interfacial modes were investigated for their use in binary
and analogue switching capabilities. This was done through the

Figure 2. Percentage concentration of (a) nonlattice oxygen from O 1s, and (b) TaOxNy from Ta 4f as a function of etching time on an
upscaled device obtained by XPS depth profiling, raw data presented in Figures S11 and S12. (c) Schematic of Pt/N−Al2O3/N−Ta2O5/Ta2N
memristor during both interfacial and filamentary switching.
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subjection of the 1T−1R devices under electrical pulses, which,
unlike DC measurements presented previously, is what is
needed to operate the device in real-world applications.54

Nevertheless, while pulse measurements are essential for
determining the practical performance, the DC I−V curves
depicted in Figure S13 still provide critical insights into the
1T−1R configuration. These insights help us understand how

to best operate the device under pulsed conditions. Figure S13
illustrates the DC I−V curves for the 1R and 1T−1R
configurations and the output characteristics of the 1T, with
the transistor operating gate voltages, VG = 2.0 and 1.2 V
highlighted for the filamentary and interfacial schemes,
respectively. The black line represents the VG applied to the
transistor in the 1T−1R setup (shown as a blue line). The 1R

Figure 3. (a) Schematic of pulse schemes applied on the 1T−1R memristor during filamentary binary switching and interfacial analogue
switching. (b) Operation of memristor in its filamentary mode showcased an endurance of over 15 million cycles shown in the form of cycle-
to-cycle variation. The first 10k cycles were analyzed in a cumulative probability plot. (c) The device-to-device switching of five devices also
shows a similar median CV, resulting in a median on−off window of ∼17×. A different operating method was utilized for the interfacial
mode, and cycle-to-cycle variation in the form of five full potentiation and depression cycles is shown in (d) and up to >3800 cycles with >1
million pulses is shown in Figure S15. The device-to-device variation of five devices is shown in (e). (f) Retention study of two and five
filamentary and interfacial states were measured at 85 °C for a total of 104 s. Energy consumption per pulse of their respective applications in
the (g) filamentary mode and (h) interfacial mode. (i) Benchmark of the energy consumption per pulse against applied pulse width against
comparing the device performance of this work against the memristors developed in other works in terms of binary switching and P/D
applications.
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configuration provides insight into the basic resistive switching
characteristics of the device with minimal external control
(apart from the externally applied compliance current) while
the 1T setup demonstrates the role of the transistor in
controlling the current flow. The 1T−1R configuration, which
integrates both a transistor and a memristive switching
element, offers several significant advantages. First, the
transistor allows for improved current control by adjusting
the VG to limit the current through the drain and the
memristor element. However, a difference is observed between
the compliance current set by the parameter analyzer and that
of the transistor gate. As shown in Figure S13, the compliance
current applied by the parameter analyzer precisely restricts the
current across the integrated device to around 0.3 mA for
filamentary switching (Figure S13a) and 0.2 mA for interfacial
switching (Figure S13b). In contrast, in the 1T−1R
configuration, the current continues to increase even after
the device switches to the current level of the 1R, indicating
that both VG and VDS are crucial parameters for controlling
device switching. The integration of the 1T−1R also reduces
overshoot current, particularly in filamentary switching, as seen
in Figure S13a, though this is less critical for interfacial
switching shown in Figure S13b. Notably, in the filamentary
1R configuration, the highest reset current consistently exceeds
the highest set current, while in the 1T−1R configuration,
these currents are approximately equal. This suggests more
controlled filament formation in the filamentary mode, leading
to improved reliability. Additionally, the 1T−1R setup
enhances scalability due to the presence of the transistor,
which allows for internal current control. Without this control,
the 1R device could fail due to excessive current flow. By
comparing these configurations, we gain a deeper under-
standing of the set and reset processes, the variability in
switching behavior, and overall device reliability. The electrical
pulse schemes used in this work are presented in Figure 3a for
operating in both the filamentary mode to obtain binary
switching and the interfacial mode to demonstrate analogue
switching. Figure 3b,c shows the cycle-to-cycle and device-to-
device variations of the devices in their filamentary mode. The
filamentary pulsed operation scheme in Figure 3a shows the set
and reset operations conducted through 2.0 and −2.0 V pulses
for 200 ns each while holding a 2.0 V on the transistor gate. In
comparison, the read operation was conducted by utilizing a
long 100 μs pulse at 0.1 V to ensure accuracy. Filamentary
switching contributes to the high endurance due to its localized
conductive paths. The amount of ionic movement is kept to a
minimum during switching, which leads to fewer switching
failures. Figure 3b demonstrates the excellent endurance of the
memristor, exceeding 15 million cycles in this mode. At first
glance, the LCS variation in the endurance plot appears to be
large, seemingly exceeding the on−off ratio (when calculated
from the lowest HCS to the highest LCS). Moreover, this
observation aligns with the existing literature, where the
variation of the LCS is typically larger than that of the
HCS.55−60 This can primarily be attributed to two factors.
First, the absence of current control in the LCS plays a
significant role. During the set process, the transistor gate is
utilized to halt any further increase in the current flowing
through the device. This current control is absent in the reset
process, where the only control is termination of the reset
voltage. This results in the LCS becoming more susceptible to
temporal or spatial fluctuations.61,62 Second, noise is also a
well-documented problem in scalable RRAM devices, with

smaller devices leading to higher noise levels, which in turn
leads to greater variability.63 Furthermore, in the filamentary
LCS, the noise from the various current paths within the
broken filament accumulates, further contributing to the
observed variability.63,64 This observation might suggest
significant cycle-to-cycle variation in the off-state during
extended cycling. However, this perceived variability is largely
due to the comprehensive presentation of data across all 15
million cycles rather than selectively displaying results, such as
displaying every nth cycle.60,65−68 This approach allows for the
precise identification of failure points, with failure defined as
the overlapping of HCS and LCS. This is significant because
many studies do not present data for every cycle, potentially
obscuring device failure moments.69 By presenting every cycle,
this study offers a realistic depiction of the long-term
performance of the devices. Furthermore, the analysis focuses
on device 1, which represents the worst-performing device
among the five devices shown in the device-to-device analysis
in Figure 3c. To further clarify the observed LCS variability,
the cumulative distribution plot in Figure 3b provides a
detailed analysis of the LCS in the first 10,000 cycles from the
endurance plot. Given that the data do not follow a normal
distribution, the 1, 2, and 3 sigmas from the median were
analyzed. The results reveal that some of the data points skew
toward the higher conductance states, while most remained at
lower conductances. This indicates that it is not entirely
accurate to base the small on−off ratio solely on the extreme
values of the HCS and LCS. Moreover, by considering data
within the 3σ (98.9 % of the data points), the variability in the
LCS improves by 41.5%. Narrowing this to 2σ (95.6% of the
data points) shows an even greater improvement of 55.2%.
This skewness toward higher conductance suggests that a
write-verify scheme could effectively filter out the less frequent,
higher-conductance tail bits in practical applications, thereby
mitigating the impact of off-state variability observed in the
endurance plot. Next, in Figure 3c, five devices were utilized to
showcase the device-to-device variation in their filamentary
mode. Overall, the five devices displayed a median on−off
window of ∼17× and an excellent median CV of 0.31 for LCS
and 0.09 for HCS. Next, these five devices were also subjected
to a separate scheme in the interfacial mode. As previously
observed in DC measurements, the conductance change is
gradual in the interfacial switching mode. Thus, by leveraging
this characteristic, a sequence of pulses was applied to the
device. This approach enables the memristor to function as an
analogue memory, capable of storing a continuum of values.
This is in contrast to the binary “0” or “1” states typically
associated with the filamentary mode, as demonstrated in
Figure 3b,c. An interfacial pulse operation scheme facilitating
this capability is illustrated in Figure 3a, and the resulting data
points are shown in Figure 3d,e. Starting from the lowest
conductive state (approximately 0.2 μS), an incremental pulse
width starting at 20 ns and increasing by 1 ns per pulse was
applied at −2.5 V, culminating at 147 ns for the final pulse,
thereby accessing 128 distinct states (indicated by the orange
arrow). Subsequently, from the highest conductive state
(approximately 6.0 μS), a similar incremental pulse width
scheme was also deployed at 3.0 V to traverse the same 128
states (indicated by the blue arrow), resulting in the overall
on/off ratio of the device in the interfacial mode to be
approximately 21×. The VG applied in this pulsed switching
scheme was held at 1.2 V, corresponding to the lower
operating current in the interfacial switching, as seen in Figure
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1b. This gradual conductance change mirrors the variable
strength of biological synapses, which is crucial for emulating
synaptic plasticity, a fundamental mechanism of learning in the
biological brain. In this context, increasing the strength of the
synapse is known as potentiation, and the opposite is referred
to as depression. Moreover, the results represent an enhance-
ment over the Ta2O5-based memristor investigated in a
previous work, which reached a saturation point after 49
potentiation pulses where the conductance level ceased to
increase linearly with additional pulses. This saturation could
affect the symmetry and linearity of the programing pulses,
leading to increased accuracy degradation in neural network
(NN) applications.40 Specifically, in the framework of synaptic
strength modulation, namely the potentiation and depression
process, typically linear dynamics are desired.70,71 Thus, a
nonlinearity factor is introduced to describe this behavior
quantitatively. This factor measures the deviation from a linear
fitting when the change in synaptic strength (conductance in
this case) is observed against the number of applied electrical
stimuli. The factor is typically obtained from the following eqs
1−372

G G B(1 e )AP
LTP min= + (1)

G G B(1 e )A P
LTD max

( 1)= (2)

B
G G
1 e AP

max min
max

=
(3)

where Gmax and Gmin are the maximum and minimum
conductance levels and A represents the nonlinearity factor,
which quantifies the linear deviation in the potentiation and
depression process with respect to the pulse number, P. Lastly,
B represents a fitting parameter. In an ideal memristor, where
the conductance exhibits a perfectly linear behavior in response
to changes in the number of pulses, the nonlinearity factor “A”
would approach zero. This allows the change in the
conductance between each state to be identical. Additionally,
when the potentiation and depression curves become sym-
metrical, it implies a consistent traversal through identical
states. This results in the uniform response of the memristor to
varying stimuli and thereby ensures that the device
conductance can be predictably modulated up or down
without disproportionate deviation. Specifically, in this work,
after fitting the first five potentiation and depression curves as
shown in Figure 3d, an excellent median nonlinearity factor of
1.8 and 1.4 was obtained. Additionally, CV analysis was
conducted for each of the 128 states to assess the deviations
among them, and the results including the median and range of
CVs are presented in Figure S14. As depicted in Figure S14a,
the CV from all 128 potentiation and depression states of the
device was determined to be in the range of 0.020−0.431 for
potentiation and 0.026−0.576 for depression across the five
different potentiation and depression (P/D) cycles. The low
CV values demonstrate a uniform cycle-to-cycle response to
the applied electrical stimuli. To delve deeper into the cycle-to-
cycle variation of the memristor operating in the interfacial
mode, the device was subjected to more than 106 pulses,
encompassing a total of 3879 P/D cycles. Here, a P/D cycle is
defined as a complete sequence comprising 128 potentiation
pulses followed by 128 depression pulses. The analysis
outcomes are presented in Figure S15, by which Figure
S15a−c illustrates the first five P/D cycles for every order of
pulses applied, extending up to the first million cycles. It was

observed that most CV of the states remained <0.13, indicating
minimal deviation throughout the extensive cycling. The
nonlinearity factor saw a reduction to <1 across the span of
the million pulses, showcasing an improvement in the linearity
of the device response over prolonged cycling. Next, the five
devices featured in Figure 3e were reused to assess the device-
to-device variation when operating in the interfacial mode. By
overlaying the first P/D cycle of each of the five devices, it was
determined in Figure S14b that the CV from all 128
potentiation and depression states of the device was
determined to be in the range of 0.016−0.396 for potentiation,
and 0.033−0.507 for depression, indicating minimal variation
across devices, underscoring their consistent performance and
reliability in the interfacial mode. Moreover, across both cycle
and device variations as shown in Figure S14, it is observed in
the inset that most of the CVs across the states are <0.2, and
the states in which CVs are >0.2 tend to be toward the lower
conductance states. Figure 3f depicts the retention perform-
ance of the memristor in both the filamentary and interfacial
modes. Two filamentary states and five interfacial states were
tested for retention. They were read by utilizing a 0.1 V DC
voltage in intervals of every ten s for 104 s. The sample was
situated on a temperature stage set at 85 °C. Throughout this
period, no significant fluctuations were observed, highlighting
the nonvolatile nature of the memristor in both operational
modes. This stability is noteworthy given the typically less
stable retention characteristics of interfacial switching devices.
It is noted that when comparing the CV of the conductance for
the interfacial states with their filamentary counterparts, the
former showed a median CV of 0.017, while the latter showed
a relatively higher fluctuation of 0.033. While the interfacial
states displayed minimal fluctuations, they still exhibited
slightly higher variability compared to the filamentary states,
which is still consistent with the general trend in the field
where the retention of interfacial switching devices is often less
stable than that of the filamentary switching devices. As
previously mentioned, this improved retention performance
can be attributed to the incorporation of nitrogen in the
switching layer, which prevents diffusion of oxygen vacancies
away from both the programed filamentary and interfacial
states, thereby enhancing its retention. This nonvolatility is
crucial in ensuring data integrity over time and energy
efficiency by reducing the need for power to maintain data.73

For neuromorphic computing applications, the stability of
states enables the accurate emulation of biological synapses,
essential for learning and memory tasks in artificial neural
networks (ANNs). The energy consumption of the memristor
was calculated by the time integral of instantaneous power, as
depicted in Figure 3g,h for filamentary and interfacial switching
pulses.74 In this calculation, the entire waveform of the applied
pulse was taken into account in the worst-case scenario, unlike
other methods, which might take into account only the reading
pulse or only the device switching time. For the filamentary
switching, the energy per pulse for set and reset operations
were 122 and 124 pJ, respectively. In the case of interfacial
switching, the smallest (20 ns) and largest (147 ns) pulses for
both potentiation and depression were analyzed, resulting in a
range of energy consumption per pulse. For potentiation, the
energy consumption ranged from 186 fJ for the smallest pulse
to 87.1 pJ for the largest pulse, while for depression, the range
was from 105 fJ to 6.6 pJ. All energy calculations included the
20 ns rise and fall time for all pulses. The switching energy of
the memristive devices developed in this work is observed to
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be relatively lower than reported devices in the literature, as
shown in a benchmark plot in Figure 3i.17,75−80 At lower
conductance levels, these devices, when performing P/D,
utilize less energy per pulse compared to certain three-terminal
electrochemical devices, which are widely recognized for their
low-energy operation.79,80 However, those three-terminal
devices often require longer switching times, whereas the
devices in this study achieve comparable switching energies
without sacrificing other critical switching parameters. Further
details of the studies compared in Figure 3i are detailed in
Table S1, where it is evident that the devices reported in this
work offer superior scalability and endurance. This indicates
that the combination of low-energy consumption, fast
switching times, and high endurance makes these devices
highly suitable for large-scale integration, surpassing the
performance trade-offs commonly seen in other works. This
establishes these memristive devices as strong candidates for
next-generation energy-efficient memory and computing
technologies.
Online and Offline Training with Progressively

Complex Data Sets and ANNs. Beyond evaluating a
memristor’s intrinsic properties like variability, endurance,
and retention is crucial, assessing its potential in real-world
applications is equally important. Since the developed
memristor in this work exhibits promising characteristics for
mimicking synapses, the aim is to further analyze its
performance through simulations of NNs. Generally, NN
learning can be categorized into two types: online and offline
learning. In online learning, the network continuously receives
data and adapts to changing conditions.81,82 Within the context
of memristor networks, this means that the weights (or
conductance levels) would continue to adjust as additional
data is introduced. The significant challenge here is
determining how device variations and the limited number of
conductive states might hinder the accuracy of the training

process. To determine this, a fully connected multilayer
perceptron (MLP) network was established, as illustrated in
Figure 4a.83 The data sets utilized to train through this network
were MNIST and fashion MNIST, each comprising grayscale
handwritten and fashion product images of 28 × 28 pixels,
respectively. These pixel values, ranging from 0 to 255, were
normalized and fed through a test fully connected MLP
network consisting of 784 input nodes, 300 nodes in the
hidden layer, and 10 output nodes corresponding to the
categories of the data sets. Each connection between the layers,
known as synaptic weights, was modeled by using 1T−1R
memristor devices. Furthermore, the activation functions,
herein referred to as output neurons, were software
implemented by using sigmoid and SoftMax functions,
respectively. In summary, the ith row in the memristor array
corresponds to the connection (synaptic weight) between the
ith node from the preceding layer in the MLP simulation, and
the ith column corresponds to the connection toward the ith
node in the subsequent layer. The calculation for each layer
can be summarized in eq 4 as follows

f Wxoutput ( bias)i i= + (4)

where, each fully connected layer computes the summation of
the ith weight, Wi, and the value from the previous node, xi. A
digital bias is then added to the result to offset the function.
The total is then passed through a digital activation function f.
This is then repeated for each layer until reaching the final
layer, where the chosen output is determined by the highest
percentage node. Figure 4b presents the test accuracy for
classifying images from the MNIST and fashion MNIST data
sets over 40 epochs using the network architecture outlined in
Figure 4a. The cycle-to-cycle and device-to-device variations
observed in the interfacial mode of the devices, as shown in
Figure 3c,d, were incorporated as programing errors to
simulate the device test conditions. Of the two data sets,

Figure 4. (a) Architecture of a fully connected MLP NN (784-300-10) trained on (b) MNIST and fashion MNIST data sets, showing test
accuracy difference of 4% and 2.6% after 50 epochs in online learning. (c) Architecture of RESNET numerically trained on CIFAR-10 and
CIFAR 100 data sets, with (d) offline learning conducted using test data sets. The study compares the impact of data set complexity and the
number of simulated memristors on inference accuracy.
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fashion MNIST is recognized as the more challenging
classification task compared to the standard MNIST data
set.84 Consequently, due to the relative ease of achieving high
accuracy with the MNIST data set, many studies focus
extensively on this data set.29−31 These studies often leverage
the high accuracy attained on the MNIST data set to validate
the performance of their devices, overlooking that there are
additional significant factors to be considered when evaluating
device efficacy in neuromorphic applications. Hence, the
primary interest here is not merely achieving high accuracy
with the memristors developed in this work. Instead, the
emphasis is on evaluating the discrepancy between the device
test and the numerical test accuracies. Therefore, a generic
network was employed to underscore this comparison. In
Figure 4b, the differences between the numerical test and
device memristor’s (dubbed “This work”) test accuracies after
40 epochs remain minor, with a 3.9% and 0.4% reduction for
the MNIST and fashion MNIST data sets, respectively. This
suggests that the differences in accuracies are not solely
attributed to the inherent complexities of the data set. Instead,

it is likely due to the saturation point in the training process;
i.e., the network reaches a juncture in which no additional
significant learning was achieved despite continued incoming
data. It was also observed that in the numerical tests, the
accuracy predominantly decreases as the number of epochs
increases. This is opposed to the device tests, where there is a
significantly higher frequency of accuracy decrease between
epochs. This discrepancy can be attributed to the limited
number of states available in the memristors, which hampers
the backpropagation algorithm’s ability to adjust the weights to
their optimum values. Conversely, during numerical training,
the number of states can be considered virtually infinite,
allowing the backpropagation process to fine-tune the weights
more precisely with each learning epoch, moving them closer
to the optimum values. Subsequently, the Ta2O5-based
memristor with its 49 potentiation and depression pulses was
also simulated. This time, with fewer states than the device
presented in this work, it lags by 2.1% and 1.5% in MNIST and
fashion MNIST data set training accuracy, respectively. Figure
4c,d illustrates the architecture and results for offline learning.

Figure 5. (a) Schematic of biological synapse element and how it inspires the ANN and SNN by leveraging on Kirchoff and Ohm’s law and
temporal spikes, respectively. (b) Pulse setup for the STDP demonstration and (c) experimental demonstration of STDP using pre- and
postspiking pulses in the interfacial mode utilizing the 1T−1R memristor and synaptic weight change shown in response to the relative time
delay between the two pulses.
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In offline learning, the weights are pretrained and stored
numerically.3 This generally lessens the memristors’ require-
ments since they only have to be programed once to the most
optimum states as determined through numerical training.
Taking advantage of this, a deep neural network (DNN) was
simulated to investigate the effects of increasing network
depth.83 DNN is defined as any network architecture with
more than one hidden layer.85 As the number of NN layers
increases, so does the requisite number of memristors needed
to simulate each weight connection, and consequently, the
likelihood of compounded errors also increases due to error
aggregation through the network. However, merely adding
more layers to a network often leads to diminished training
accuracy due to the vanishing gradient problem. Hence, a well-
established residual network architecture (RESNET) to enable
layer incrementation with minimum impact on training
accuracy was leveraged to determine the error aggregation in
DNN based on the memristor developed in this work.86 As
depicted in Figure 4c, the RESNET architecture incorporates
multiple skip connections to circumvent less significant layers.
Figure 4d then showcases the inference accuracy for various
NN architectures trained on different data sets. Two more data
sets are introduced here, CIFAR-10 and CIFAR-100, which
consist of colored images (32 × 32 pixels × 3 channels) and
are categorized into 10 and 100 output classes, respectively.87

Two aspects were analyzed to determine the impact on the
disparity between the numerical and device inference accuracy:
the complexity of the model, which relates to the number of
memristors required to simulate the mode, and the complexity
of the data set, which is ranked as follows: MNIST < fashion
MNIST < CIFAR-10 < CIFAR-100. This order is based on the
number of input pixels and output classes. Initially, the trained
generic model, as described in Figure 4a, was utilized for
inference on the MNIST and fashion MNIST data sets. Since
the model used input pixels and number output classes were
identical, the number of required memristors for the training of
MNIST and fashion MNIST remained the same. It was noted
that the difference between numerical and device inference
accuracies for MNIST and fashion MNIST data sets was
almost negligible. Subsequently, inference was done on the
CIFAR-10 data set after training on different RESNET
architecture networks, mainly the RESNET-20, 32, and 56,
which corresponds to the total number of convolution layers
within the DNN. The observed differences between the
numerical and device inference accuracies were −2.42, −1.92,
and −2.14%, corresponding to the RESNET-20, 32, and 56,
respectively. Although these differences are still relatively
insignificant, they reveal that there is no significant trend in the
discrepancy between numerical and device inference accu-
racies, even as the number of simulated memristors increased
from 273 to 857k. However, it is still crucial to note that both
inference accuracies still increase with the complexity of the
RESNET DNN layers, which align with expectations. Finally,
the analysis was extended by introducing CIFAR-100, which
consists of 100 output classes. This was trained again on the
RESNET-56 network. Adjustments to the size of the
convolution filters led to an increase in the number of
memristors required for simulation, reaching ∼13.6 M. Here,
the device accuracy deviates by almost −7%, marking a
relatively more significant discrepancy than previous simu-
lations. It should be noted that the numerical inference
accuracies of the above simulations are consistent with the
literature with a margin of error.86 Therefore, it can be

concluded that the complexity of data sets exerts a more
substantial influence on the inference accuracy disparity than
the cumulative errors resulting from the use of more
memristors during offline learning. This is due to an absence
of a need for weight tuning during inference, as opposed to
online learning, where adjusting to the most optimal weight
(conductance) values is crucial.
Adjustments of Weights Using Relative Timings of

Action Potentials. In Figure 4, the focus was on utilizing
memristors proposed in this work to simulate the construction
of an ANN. The backpropagation algorithm, which is crucial to
training the NN, relies on known label outputs to adjust the
weights of the network. This is also known as supervised
learning. Conversely, in a spiking neural network (SNN), the
spike-timing-dependent plasticity (STDP) process facilitates
unsupervised learning by strengthening synaptic connections
based on neuronal spikes. The differences in data processing in
ANN and SNN are depicted in Figure 5a. While ANN utilizes
Kirchoff’s and Ohm’s law to perform weight adjustments, SNN
stands out in its event-based processing, where computations
are triggered by temporal events (spikes), making them highly
efficient for real-time data processing.88,89 Nevertheless, both
ANN and SNN seek to emulate the biological processing by
allowing the connection strength adjustment between pre- and
postneurons, and this work aims to utilize the memristor
proposed to emulate the synaptic element in both the ANN
and SNN. Figure 5b depicts the pulse scheme for STDP
demonstration, by which the delay of the pre- and postspikes
(Δt) are separated into three regions: Δt < 0 (−5.50 to 2.02
μs), Δt ≈ 0 (−1.50 to 1.50 μs), and Δt < 0 (2.02 to 5.50 μs).
Figure 5c then illustrates the memristor demonstrating STDP
behavior with these two distinct pulse spikes applied
sequentially to the 1T−1R memristor in its interfacial mode.
The synaptic weight (conductance) of the memristor,
measured before and after the pulses, reveals changes
corresponding to the spike timings. It was observed that a
positive synaptic weight change results when the presynaptic
spike precedes the postsynaptic spike, suggesting a causal
relationship. Conversely, a negative change occurs when the
order of spikes is reversed, indicating a lack of causality. This
phenomenon, termed potentiation (orange data points) and
depression (blue data points), respectively, also shows that the
greater the time delay between spikes, the lesser the absolute
change in synaptic weight. Moreover, in the pulse scheme
depicted in Figure 5b, there is a specific time frame when the
pre- and postsynaptic spikes are sent too closely together,
which can result in no change in conductance (red data
points). This phenomenon, which is consistent with other
studies using nonidentical pulses, is also observed in biological
systems under asymmetric Hebbian learning rule.90 Each data
point in Figure 5c represents the median weight change over 5
different paired pulses, and the error bars represent the range
of the weight changes. This is represented by eq 591

W
g

g
t t e t0

norm

1= | | | |

(5)

where g0 is the scaling factor, g0 = βe−β is the normalizing
constant, α and β are parameter values, and ΔW is the synaptic
weight change as a result of Δt. The memristor developed in
this study effectively functions within both ANNs and SNNs,
addressing distinct computational needs. This versatility is
advantageous, allowing the device to utilize the structured
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pattern recognition capabilities of ANNs, along with the
dynamic temporal processing of SNNs, thus providing
comprehensive computational solutions.

CONCLUSION
This study developed a resistive switching memristor that
exhibits both filamentary and interfacial switching capabilities
aimed at advancing neuromorphic hardware elements. The
initial demonstration of a 1T−1R bimodal device integration
unraveled the operational current levels across different states
during the switching process, providing essential insights into
the functional characteristics of the device. XPS depth profiling
was employed to elucidate the underlying switching mecha-
nism, revealing the capacity of the memristor to support two
distinct modes within a single device. It was also proposed that
the improvements to the performance in both modes can be
attributed to three distinct fabrication processes: N-doping,
introduction to bilayer structure, and annealing. As variation
has been a known problem plaguing resistive memristors, the
temporal and spatial variations have also been investigated.
Temporally, the memristor exhibited commendable endurance,
surpassing 15 million cycles in the filamentary mode and a
million in the interfacial mode. Spatial variability was also
scrutinized across five devices, with the median CV recorded at
0.31 and 0.09 for the LCS and HCS in the filamentary mode,
and most states remained <0.12 in the interfacial mode.
Furthermore, retention tests at elevated temperatures of 85 °C
for 104 s confirmed the stability of two filamentary and five
interfacial states, underscoring the memristors’ reliability and
potential as nonvolatile memory elements suitable for CMOS
integrations. Subsequently, the memristors were evaluated
through computer simulations for their capabilities in both
supervised and unsupervised learning. In supervised learning
scenarios, particularly for online learning, the memristors
achieved a high learning rate, with a deviation of less than 4%
from numerical training in MNIST and fashion MNIST data
sets on a fully connected NN architecture. Additionally, offline
learning simulations with more complex data sets like CIFAR-
10 and CIFAR-100 indicated a deviation of ∼2% and 6.73%,
respectively, despite the significant increase in simulated
memristors for the latter. This suggests that the error
accumulation from utilizing more memristors had a minimal
impact on the inference accuracy. Finally, the ability of the
memristors to perform unsupervised learning was demon-
strated through implementation of the biological plasticity
mechanism. The devices in this work demonstrated a broad
spectrum of applications, from conventional data processing to
the analysis of real-time sensory information. This versatility
not only enhances computational efficiency but also bridges
artificial and biological intelligence by mimicking biological
rules by using artificial memristive elements. This allows for
the facilitation of in-memory computing, more effectively
circumventing the von Neumann bottleneck and enabling
parallel processing capabilities, representing a significant stride
toward more efficient and biologically inspired computing
architectures.

EXPERIMENTAL SECTION
Device Fabrication. The N−Ta2O5 and N−Al2O3 switching

layers, and the Pt inert electrode layer were grown above the Ta2N
VIA (acting as the active electrode), which was connected to the drain
of the NMOS transistor. Since the surface of the chip was
encapsulated by Si3N4, electron beam lithography and reactive ion

etching steps were utilized to gain access to the VIA. The chip was
then subsequently transferred to a magnetron sputtering tool for
deposition. An Ar reverse sputtering step was conducted on the
exposed surface to preclean its surface from atmospheric contami-
nants with 50 W DC power at 5 mTorr chamber pressure for 2 min. A
Ta2O5 ceramic target was utilized to deposit the 2 nm N−Ta2O5 film
with a 50 W RF power, with the chamber pressure kept constant at 2
mTorr, while 19 sccm of Ar and 1 sccm of N2 gases were released
during the deposition process. A similar process was utilized to obtain
a 1 nm N−Al2O3 film, albeit with an Al2O3 ceramic target at a 100 W
RF power. Finally, a 20 nm Pt top electrode was grown by 50 W DC
power deposited in 20 sccm of Ar at 2 mTorr.
Device and Material Characterization. For bulk character-

izations, XPS was conducted by utilizing the Kratos Analytical Axis
Supra Plus XPS system. The electrical I−V characterizations of the
devices were performed using the Keithley 4200A-SCS semiconductor
parameter analyzer.
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